首页> 外文OA文献 >On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly
【2h】

On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly

机译:基于稀疏编码的鲁棒人脸识别:好,坏,和   丑陋的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the field of face recognition, Sparse Representation (SR) has receivedconsiderable attention during the past few years. Most of the relevantliterature focuses on holistic descriptors in closed-set identificationapplications. The underlying assumption in SR-based methods is that each classin the gallery has sufficient samples and the query lies on the subspacespanned by the gallery of the same class. Unfortunately, such assumption iseasily violated in the more challenging face verification scenario, where analgorithm is required to determine if two faces (where one or both have notbeen seen before) belong to the same person. In this paper, we first discusswhy previous attempts with SR might not be applicable to verification problems.We then propose an alternative approach to face verification via SR.Specifically, we propose to use explicit SR encoding on local image patchesrather than the entire face. The obtained sparse signals are pooled viaaveraging to form multiple region descriptors, which are then concatenated toform an overall face descriptor. Due to the deliberate loss spatial relationswithin each region (caused by averaging), the resulting descriptor is robust tomisalignment & various image deformations. Within the proposed framework, weevaluate several SR encoding techniques: l1-minimisation, Sparse AutoencoderNeural Network (SANN), and an implicit probabilistic technique based onGaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA andChokePoint datasets show that the proposed local SR approach obtainsconsiderably better and more robust performance than several previousstate-of-the-art holistic SR methods, in both verification and closed-setidentification problems. The experiments also show that l1-minimisation basedencoding has a considerably higher computational than the other techniques, butleads to higher recognition rates.
机译:在面部识别领域,稀疏表示(SR)在过去几年中受到了相当大的关注。大多数相关文献都集中在封闭集识别应用程序中的整体描述符上。基于SR的方法的基本假设是,图库中的每个类都有足够的样本,并且查询位于同一类图库所跨越的子空间上。不幸的是,这种假设在更具挑战性的人脸验证场景中很容易被违反,在这种情况下,需要进行算法确定两个人脸(其中一个或两个人之前从未见过)是否属于同一个人。在本文中,我们首先讨论了为什么以前使用SR的尝试可能不适用于验证问题,然后提出了一种通过SR进行人脸验证的替代方法,特别是建议在本地图像补丁而不是整个人脸上使用显式SR编码。通过平均将获得的稀疏信号合并,以形成多个区域描述符,然后将它们进行级联以形成整体面部描述符。由于每个区域内故意丢失空间关系(通过平均导致),因此生成的描述符具有鲁棒的错位和各种图像变形的能力。在提出的框架内,我们评估了几种SR编码技术:l1最小化,稀疏自动编码器神经网络(SANN)和基于高斯混合模型的隐式概率技术。在AR,FERET,exYaleB,BANCA和ChokePoint数据集上进行的全面实验表明,在验证和封闭设置识别问题上,所提出的局部SR方法比以前的几种最新的整体SR方法获得了显着更好和更强大的性能。实验还表明,基于l1最小化的编码比其他技术具有更高的计算能力,但会导致更高的识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号